| Home | E-Submission | Sitemap | Contact Us |  
Exerc Sci > Volume 32(4); 2023 > Article
Akimoto: Human Skeletal Muscle Fiber Type Switching Revisited
Skeletal muscles are composed of several fiber types that differ in their structure, molecular composition, metabolic activity, and functional properties. The four major myosin heavy chain (MyHC) isoforms, slow-twitch oxidative (type I), fast-twitch oxidative (type IIa), fast-twitch oxidative glycolytic (type IId/x), and fast-twitch glycolytic (type IIb), are hetero-geneously distributed in the skeletal muscles of mammals, and are useful markers for the muscle fiber types [1]. In humans, MyHC IIb is not de-tectable in skeletal muscles, but MYH4, the gene encoding this protein, is present in our genome. Muscle performance is, at least partly, dictated by the composition of muscle fiber types, and precise understanding of the fiber type has attracted much attention from sports scientists. In addition, increased interest in the role of skeletal muscle in metabolic diseases has extended the awareness of muscle fiber types to a wide audience in clini-cal medicine [2].
There is considerable inter-individual variability in the composition of skeletal muscle fiber types among humans. For example, the proportion of type I fibers in the vastus lateralis muscle ranged from 15% to 85% in a large cohort of sedentary and physically active individuals of both sexes, and type I fibers accounted for less than 35% or more than 65% of the fibers in 25% of the individuals [3]. Many studies published in the 1960s to 1980s of muscle biopsies from athletes also showed marked variability in the fiber type profile because type I fibers tended to be more prominent in endurance athletes and type II fibers were more predominant in sprinters [4]. It was long thought that the human muscle fiber type was genetically determined [5-8] because most studies that compared the composition of muscle fiber types before and after training showed that neither endurance training nor strength training altered the muscle fiber composition [9-30]. Only a few studies have reported that endurance training causes a shift from type IIx to type IIa fibers [31-34] or from type II to type I fibers [35,36]. However, since the 1980s, researchers in this field have hypothesized that a switch in fiber types may also occur in human skeletal muscles based on the results of mouse and rat studies and the changes in oxidative/glycolytic enzymes following endurance/sprint exercise training in humans [37-38]. In addition, most of studies above employed myofibrillar actomyosin ATPase histochemistry for determination of fiber type composition. This analysis appears to be significantly different from antibody-based analyses. Since myofibrillar actomyosin ATPase histochemistry is vulnerable to subtle changes in pH and requires staining of serial sections, caution should be taken when interpreting the data, particularly with re-gard to changes in type I fibers [39]. It should be emphasized that there is still a lack of evidence from longitudinal exercise training studies showing a switch between type I and type II fibers. Therefore, the extent to which these variations are elicited by training or simply reflect genetic factors re-mains unknown [40].
However, a complete switch from type I to type II fibers in human skeletal muscle can occur after long-term (over several years) spinal cord injury [41]. This finding indicates human skeletal muscle may possess the capacity to undergo a shift in muscle fiber type in response to physiologi-cal/pathological stimuli. Therefore, more evidence for an exercise-induced switch in muscle fiber types should be accumulated from controlled human studies. The abundance of mitochondria and oxidative enzymes is greatest in type I fibers and lowest in type IId/x fibers in human muscles, whereas the oxidative potential is highest in IIa fibers and lowest in IIb fibers in mouse and rat muscles. Considering these species differences, mouse skeletal muscle does not seem to be the best model of human muscle, and it is important to consider these differences when one tries to extrapolate conclusions derived from studies of genetic models to human conditions [2].

Conflict of Interest

The authors declare that they do not have conflict of interest.

AUTHOR CONTRIBUTIONS

Conceptualization, Writing-Review & editing: T Akimoto.

REFERENCES

1. Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles. Physiol Rev. 2011;91(4):1447-531.
crossref pmid
2. Schiaffino S. Fibre types in skeletal muscle: a personal account. Acta Physiol (Oxf). 2010;199(4):451-63.
crossref pmid
3. Simoneau JA, Bouchard C. Human variation in skeletal muscle fiber-type proportion and enzyme activities. Am J Physiol Endocrinol Metab. 1989;257:E567-72.
crossref pmid
4. Costill DL, Daniels J, Evans W, Fink W, Krahenbuhl G, et al. Skeletal muscle enzymes and fiber composition in male and female track athletes. J Appl Physiol. 1976;40:149-54.
crossref pmid
5. Komi PV, Rusko H, Vos J, Vihko V. Anaerobic performance capacity in athletes. Acta Physiol Scand. 1977a;100(1):107-14 doi: 10.1111/j.1748-1716.1977.tb05926.x.
crossref pmid
6. Komi PV, Viitasalo JH, Havu M, Thorstensson A, Sjödin B, et al. Skeletal muscle fibres and muscle enzyme activities in monozygous and di-zygous twins of both sexes. Acta Physiol Scand. 1977b;100(4):385-92 doi: 10.1111/j.1365-201X.1977.tb00001.x.
crossref pmid pdf
7. Saltin B, Henriksson J, Nygaard E, Andersen P, Jansson E. Fiber types and metabolic potentials of skeletal muscles in sedentary man and endurance runners. Ann NY Acad Sci. 1977;301:3-29 doi: 10.1111/j.1749-6632.1977.tb38182.x.
crossref pmid
8. Salmons S, Henriksson J. The adaptive response of skeletal muscle to increased use. Muscle Nerve. 1981;4(2):94-105 doi: 10.1002/mus.8800 40204.
crossref pmid
9. Alén M, Häkkinen K, Komi PV. Changes in neuromuscular performance and muscle fiber characteristics of elite power athletes self-ad-ministering androgenic and anabolic steroids. Acta Physiol Scand. 1984;122(4):535-44 doi: 10.1111/j.1748-1716.1984.tb07542.x.
crossref pmid
10. Andersen P. Capillary density in skeletal muscle of man. Acta Physiol Scand. 1975;95(2):203-5 doi: 10.1111/j.1748-1716.1975.tb10043.x.
crossref pmid
11. Bylund AC, Bjurö T, Cederblad G, Holm J, Lundholm K, et al. Physical training in man. Skeletal muscle metabolism in relation to muscle morphology and running ability. Eur J Appl Physiol Occup Physiol. 1977;36(3):151-69 doi: 10.1007/BF00421747.
pmid
12. Constable SH, Collins RL, Krahenbuhl GS. The specificity of endurance training on muscular power and muscle fibre size. Ergonomics. 1980;23(7):667-78 doi: 10.1080/00140138008924781.
crossref pmid
13. Costill DL, Coyle EF, Fink WF, Lesmes GR, Witzmann FA. Adaptations in skeletal muscle following strength training. J Appl Physiol Respir Environ Exerc Physiol. 1979;46(1):96-9 doi: 10.1152/jappl.1979.46.1.96.
crossref pmid
14. Coyle EF, Feiring DC, Rotkis TC, Cote RW 3rd, Roby FB, et al. Speci-ficity of power improvements through slow and fast isokinetic training. J Appl Physiol Respir Environ Exerc Physiol. 1981;51(6):1437-42 doi: 10.1152/jappl.1981.51.6.1437.
crossref pmid
15. Dons B, Bollerup K, Bonde-Petersen F, Hancke S. The effect of weight-lifting exercise related to muscle fiber composition and muscle cross-sectional area in humans. Eur J Appl Physiol Occup Physiol. 1979;40(2):95-106 doi: 10.1007/BF00421155.
crossref pmid pdf
16. Eriksson BO, Gollnick PD, Saltin B. Muscle metabolism and enzyme activities after training in boys 11-13 years old. Acta Physiol Scand. 1973;87(4):485-97 doi: 10.1111/j.1748-1716.1973.tb05415.x.
crossref pmid
17. Gollnick PD, Armstrong RB, Saltin B, Saubert CW 4th, Sembrowich WL, et al. Effect of training on enzyme activity and fiber composition of human skeletal muscle. J Appl Physiol. 1973;34(1):107-11 doi: 10. 1152/jappl.1973.34.1.107.
crossref pmid
18. Henriksson J, Reitman JS. Quantitative measures of enzyme activities in type I and type II muscle fibres of man after training. Acta Physiol Scand. 1976;97(3):392-7 doi: 10.1111/j.1748-1716.1976.tb10279.x.
crossref pmid
19. Houston ME, Bentzen H, Larsen H. Interrelationships between skeletal muscle adaptations and performance as studied by detraining and retraining. Acta Physiol Scand. 1979;105(2):163-70 doi: 10.1111/j.1748-1716.1979.tb06328.x.
crossref pmid
20. Kiessling KH, Pilström L, Bylund AC, Saltin B, Piehl K. Enzyme activities and morphometry in skeletal muscle of middle-aged men after training. Scand J Clin Lab Invest. 1974;33(1):63-9 doi: 10.3109/00365517409114199.
crossref pmid
21. Lavoie JM, Taylor AW, Montpetit RR. Skeletal muscle fibre size adaptation to an eight-week swimming programme. Eur J Appl Physiol Occup Physiol. 1980;44(2):161-5 doi: 10.1007/BF00421094.
crossref pmid pdf
22. MacDougall JD, Elder GC, Sale DG, Moroz JR, Sutton JR. Effects of strength training and immobilization on human muscle fibres. Eur J Appl Physiol Occup Physiol. 1980;43(1):25-34 doi: 10.1007/BF00 421352.
crossref pmid pdf
23. Orlander J, Kiessling KH, Ekblom B. Time course of adaptation to low intensity training in sedentary men: dissociation of central and local effects. Acta Physiol Scand. 1980;108(1):85-90 doi: 10.1111/j.1748-1716.1980.tb06503.x.
crossref pmid
24. Orlander J, Kiessling KH, Karlsson J, Ekblom B. Low intensity training, inactivity and resumed training in sedentary men. Acta Physiol Scand. 1977;101(3):351-62 doi: 10.1111/j.1748-1716.1977.tb06017.x.
crossref pmid
25. Saltin B, Nazar K, Costill DL, Stein E, Jansson E, et al. The nature of the training response; peripheral and central adaptations of one-legged exercise. Acta Physiol Scand. 1976;96(3):289-305 doi: 10.1111/j.1748-1716.1976.tb10200.x.
pmid
26. Sjödin B, Thorstensson A, Frith K, Karlsson J. Effect of physical training on LDH activity and LDH isozyme pattern in human skeletal muscle. Acta Physiol Scand. 1976;97(2):150-7 doi: 10.1111/j.1748-1716.1976.tb10247.x.
crossref pmid
27. Svedenhag J, Henriksson J, Sylvén C. Dissociation of training effects on skeletal muscle mitochondrial enzymes and myoglobin in man. Acta Physiol Scand. 1983;117(2):213-8 doi: 10.1111/j.1748-1716.1983. tb07199.x.
crossref pmid
28. Thorstensson A, Sjödin B, Karlsson J. Enzyme activities and muscle strength after “sprint training” in man. Acta Physiol Scand. 1975;94(3):313-8 doi: 10.1111/j.1748-1716.1975.tb05891.x.
crossref pmid
29. Thorstensson A, Hultén B, von Döbeln W, Karlsson J. Effect of strength training on enzyme activities and fibre characteristics in human skeletal muscle. Acta Physiol Scand. 1976a;96(3):392-8 doi: 10.1111/j.1748-1716.1976.tb10207.x.
crossref pmid
30. Thorstensson A, Karlsson J, Viitasalo JH, Luhtanen P, Komi PV. Effect of strength training on EMG of human skeletal muscle. Acta Physiol Scand. 1976;98(2):232-6 doi: 10.1111/j.1748-1716.1976.tb00241.x.
crossref pmid
31. Andersen P, Henriksson J. Training induced changes in the subgroups of human type II skeletal muscle fibres. Acta Physiol Scand. 1977;99(1):123-5 doi: 10.1111/j.1748-1716.1977.tb10361.x.
crossref pmid
32. Green HJ, Thomson JA, Daub WD, Houston ME, Ranney DA. Fiber composition, fiber size and enzyme activities in vastus lateralis of elite athletes involved in high intensity exercise. Eur J Appl Physiol Occup Physiol. 1979;318(41(2)):109-17 doi: 10.1007/BF00421658.
crossref pmid pdf
33. Houston ME, Wilson DM, Green HJ, Thomson JA, Ranney DA. Physiological and muscle enzyme adaptations to two different intensi-ties of swim training. Eur J Appl Physiol Occup Physiol. 1981;46(3):283-91 doi: 10.1007/BF00423404.
crossref pmid pdf
34. Mandroukas K, Krotkiewski M, Hedberg M, Wroblewski Z, Björntorp P, et al. Physical training in obese women. Effects of muscle morphology, biochemistry and function. Eur J Appl Physiol Occup Physiol. 1984;52(4):355-61 doi: 10.1007/BF00943363.

35. Klausen K, Andersen LB, Pelle I. Adaptive changes in work capacity, skeletal muscle capillarization and enzyme levels during training and detraining. Acta Physiol Scand. 1981;113(1):9-16 doi: 10.1111/j.1748-1716.1981.tb06854.x.
crossref pmid
36. Jansson E, Sjödin B, Tesch P. Changes in muscle fibre type distribution in man after physical training. A sign of fibre type transformation? Acta Physiol Scand. 1978;104(2):235-7 doi: 10.1111/j.1748-16.1978. tb06272.x.
pmid
37. Jolesz F, Sreter FA. Development, innervation, and activity-pattern in-duced changes in skeletal muscle. Annu Rev Physiol. 1981;43:531-52 doi: 10.1146/annurev.ph.43.030181.002531.
crossref pmid
38. Howald H. Training-induced morphological and functional changes in skeletal muscle. Int J Sports Med. 1982;3(1):1-12 doi: 10.1055/s-2008-1026053.
crossref pmid
39. Yan Z, Okutsu M, Akhtar YN, Lira VA. Regulation of exercise-in-duced fiber type transformation, mitochondrial biogenesis, and angio-genesis in skeletal muscle. J Appl Physiol (1985). 2011;110(1):264-74 doi: 10.1152/japplphysiol.00993.2010.
crossref pmid pmc
40. Andersen JL, Schjerling P, Saltin B. Muscle, genes and athletic performance. Sci Am. 2000;283:48-55.
crossref pmid
41. Grimby G, Broberg C, Krotkiewska I, Krotkiewski M. Muscle fiber composition in patients with traumatic cord lesion. Scand J Rehabil Med. 1976;8:37-42.
pmid
TOOLS
PDF Links  PDF Links
PubReader  PubReader
ePub Link  ePub Link
XML Download  XML Download
Full text via DOI  Full text via DOI
Download Citation  Download Citation
  Print
Share:      
METRICS
0
Crossref
0
Scopus 
666
View
40
Download
Related article
Editorial Office
The Korean Society of Exercise Physiology
Dept. of Healthcare and Science, Dong-A University, 37, Nakdong-daero 550beon-gil, Saha-gu, Busan 49315, Korea
TEL: +82-51-200-7517   E-mail: editor@ksep-es.org
Editorial Assistant: Taewan Kim +82-10-4019-0208
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © The Korean Society of Exercise Physiology.                 Developed in M2PI